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1. PRELIMINARY

Lemma 1.1 (Smith Normal Form). Let A be a nonzero m x n matriz over a principal ideal domain(PID)
R. There exist invertible m X m and n X n matrices P,Q so that

(1) P1AQ™! = Diag(ay,--- , ay),
where a; | a1 for i < r, here the last few terms can be 0.

The matrices P and @ may not be products of elementary matrices in general (see [1, p.23]). When the
ring R is Euclidean, then it is possible to find P and @ through elementary row/column operations.

Lemma 1.2 (Structure Theorem over PID, Invariant factor decomposition). Fvery finitely generated mod-
ule M over a PID R is isomorphic to a unique one of the form

(2) R (P o1 R/ (d),
where d; | diy1, and d; # (0). The summands are called the invariant factors.

Lemma 1.3 (Structure Theorem over PID, Primary decomposition). Conditions are the same as above,
M s isomorphic to a unique one of the form

(3) R @ @i, R/ ().

where p; are prime ideals.

2. THEOREMS

We regard a left-multiplication of an n x n matrix A over a field F as F[z]-module element, namely
x. Then F" can be viewed as an F[z|-module with p(z) € F[z]| acting as p(A) € Mpxn(F), denoted as
MA. Note that for any field F, the polynomial ring F[z] is an ED (Euclidean Domain), hence a PID. Our
application of the structure theorem in invariant factor form is

Theorem 2.1 (Rational Canonical Form-Invariant factor form). Let A be a n x n matriz over a field IF.
Then A is similar to a block diagonal matriz of the form

(4) ®i1C(fi),

where f; | fiz1, and C(f;) is the companion matriz associated to f;. This form is unique up to rearrangement
of blocks.

Using primary decomposition, we have

Theorem 2.2 (Rational Canonical Form-Primary decomposition). Conditions are the same as above, A
is similar to a block diagonal matrix of the form

(5) &i=1C(p;"),
where p; are irreducible polynomials in F[x]. This form is unique up to rearrangement of blocks.

For the proof, use structure theorem to the F[z]-module M# as described above.
If the ground field is algebraically closed, then we have Jordan Canonical Form.
1
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Theorem 2.3 (Jordan Canonical Form). Let A be a n x n matriz over an algebraically closed field F.
Then A is similar to a block diagonal matriz of the form

(6) i1/ (Ai, i),
where \; are the eigenvalues of A, and J(X\;, ;) is the Jordan block of diagonal \; and 1 directly below the

main diagonal with size r; X r;. This form is unique up to rearrangement of blocks.

Theorem 2.4 (Generalized Jordan Form). Let A be a n x n matriz over a field F. Then A is similar to
a block diagonal matrix of the form

(7) @it (pir i),

where p; are the irreducible factors of the characteristic polynomial of A, and J(p;,7;) is the generalized

Jordan block of the form

Clp:) 0 0 0
u Cp) 0 0
0 U  Cp) 0
: .0
0 0 - U Cpi)

with the matrix U whose sole nonzero entry 1 on the upper right corner, and r; is the number of diagonal
blocks. This form is unique up to rearrangement of blocks.

For the proof of Theorem 2.4, note that J(p,r) is for the F[z]-module F[x]/(p"). Consider the expression

f(z) = ao(x) + a1 (x)p(x) + - + ar_1 (x)p(z) "t € Flz]/(p"),
where a;(z) € Flx], deg(a;) < deg(p).
Now, the problem reduces to determining invariant factors. We use Smith Normal Form to do this.

Theorem 2.5 (Invariant Factors). Let A be a n x n matriz over a field F. Then invariant factors can be
recovered from the Smith Normal Form of xI — A. More precisely, if P~ (xI — A)Q~' = Diag(f1, - , fa)
for some invertible matrices P,Q and f; | fiy1, then f; are the invariant factors of A.

Here, first few terms can be 1. The proof starts from investigating the exact sequence
(8) 0 — Fla]” 224 Fla & M4 — 0.
Then we see that
MA ~ Flz]" /Im(z] — A).

Corollary 2.1 (Similarity of Transpose). Let A be a n X n matriz over a field F. Then A and its transpose
AT are similar.

Proof. Write I — A = PD(Q where P,(Q are invertible in My, (F[z]) and the Smith Normal Form D.
Taking transpose, we have

oI — AT =QTDTPT = QTDPT.
Since QT, PT are also invertible, we see that 1 — A and zI — AT have the same invariant factors. O

Corollary 2.2 (Computation of Similarity Transform for Transpose). Let A be n X n matriz over a field
F. Then we are able to compute the nonsingular similarity transform X such that XA = ATX .

Proof. Let xI — A = PDQ with intertible P, Q € My x,(F[z]) and D be the Smith Normal Form of A. Note
that the computation of Smith Normal Form is essentially elementary row/column operations. Thus, we
keep track of row/column operations on zI — A, and P is obtained by a product of inverses of elementary

matrices corresponding to the row operations, Q by a product of those inverses of column operations.
Then 2I — A = PDQ and xI — AT = QT DP? yield an F[z]-module isomorphism

Fla]” /Tm(x — A) LL75 Fla] /Im(a] — AT).

We may regard the module isomorphism as a vector-space isomorphism between M# and M AT This
isomorphism is obtained by writing Q7 P! € M,,«,(F[z]) with z replaced by the left multiplication of A”.
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Write the resulting matrix as X. Then X is nonsingular since it is an isomorphism between n-dimensional
vector spaces. Since QT P71 is an F[x]-module isomorphism, it commutes with the action of . Since the

action of z in M4 is the left multiplication of A4, and that in M AT is the left multiplication of A”, we have
XA=ATX. O

Note that this method can be applied in finding a similarity transform to any given two similar matrices.

2 3

Example 2.1. Let A = <5 .

>. Then the elementary row/column operations on xI — A yield the Smith

Normal Form

Pzl - A)Q ! = <1 2 gy 1) .

T4 —

-3 —_Ir—< 1
— — 3
r=(2) e (7 )
o 2c—9 1 2 1
o= (3 )= () (G
3 3
This gives the nonsingular matrix X,

=090 )01

Here, we have

Then,

Wl
N
Il
7 N\
Wl |
olut
Wl Wl
~~_ ~

For this X, we have

5 2
XA:<3 3>:ATX.
31

Note that in this method, we do not need to fully produce a Smith Normal Form for A. We just need
a diagonal D in the elementary row/column operations. This makes the calculation of P and @ simpler.
With this simpler procedure, we have the following general result.

Example 2.2. In general, let A = <Z Z) Ifb#0,

1 1 x—a —b 1 B _C+w
1 %l 1 —c x—d)\%FH* 1) b/}

a—d
With P! = 1 x}d and Q = a::l,a , we have QTP 1 = [ b 1 .
1 a=d 1 _z=a g 1

a—d
Case 1: b # 0, we can take X = < ’1’ 1>. Then XA = ATX.

—d
Case 2: b=0, c # 0, then we take X = < c 1>. Then X AT = AX.

1
Case 3: b =c =0, then A is diagonal, and X = I works.

Corollary 2.3 (Similarity Preserved by Field Extension). Let A and B be n x n matrices over a field K.
Let L be a field extension of K. Then A and B are similar over K if and only if they are similar over L.

Proof. =) is obvious.
<) Let {A;} be the complete set of invariant factors of A, and {B;} that of B. Then we have

Lok (©:iK[z]/(A;) = @i Llx]/(A),
and
L@k (®:K[zx]/(Bi)) = @ L[x]/(B;).

Since A and B are similar over L, we see that the RHS of the above formulas should be equal. Hence the
sets of invariant factors {A;} and {B;} are identical, yielding that A and B are similar over K. O
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Theorem 2.6 (Centralizer of a Matrix). Let A be a nxn matriz over F. Let Cy = {B € Myxn(F) | AB =
BA}. Then the minimal dimension of Cy over F is n, and this is obtained precisely when the minimal
polynomial and characteristic polynomial of A coincide.

The idea of proof is interpreting C'4 as an F[z]-endomorphism algebra of the F[z]-module M4 (as
described above). We use the Rational Canonical Form-Primary decomposition M4 = @ ® F[z]/(p*»).
P (3

Then C4 can be written as

Ca = Endgpy M* =~ @%Homw (Flz]/(p*r), Flz]/ (p*7)).
p 9.

where the first sum is over all irreducible polynomials p that divides the characteristic polynomial of A,
and the indices i, j of second double sum is from the partition A\, = >, A, ; that indicates the powers of p
in p-primary part of M#. We then have the formula for dimpC4

(9) dimpCy = dimg Endgp M4 = “(degp) Y~ min{,i, Ay}
p 1,7
The result we have on dimpC4 is a special case of Cecioni-Frobenius Theorem.

Theorem 2.7 (Cecioni-Frobenius). Let A be a m x m matriz, B be a n X n matriz over F. Denote by
va B the dimension of Cs.p over F where

Cup = {X € Myn(F) | AX — XB = 0}.
Then we have vap =3_,(degp) >, min{A,;, pp;}-

Here the first sum is over all irreducible polynomials p which are common in the primary decompositions
of M4 and MPB, and the indices i, j of second double sum is from the partition Ap = Y _; A\p;i that indicates
the powers of p in p-primary part of M4, fp = j Hp.j that of powers of p in p-primary part of MPB.

Proof. Note that C'4 p = Homg, (MB, M4). Then

va,p = dimpCy g = dimp Homgp, (MB, MA) = Z(degp) Z min{ Ay, thp.j }-

p %,J

An obvious application of Cecioni-Frobenius Theorem is

Theorem 2.8 (Sylvester Equation). Let A be a m x m matriz, B be a n X n matriz, and C be a m x n
matriz over F. Consider a matrixz equation AX — XB = C. Then

e The matriz equation AX — XB = C has a unique solution if and only if primary decompositions of M*
and MP have no common irreducible polynomial.

e In case the equation does mot have a unique solution, we have

vap = dimpCy B = dimp{X € Mp,xn(F) | AX — XB =0} >0.
We present a method for determining similarity of two matrices without module theory.

Definition 2.1 (Kronecker Product). Let A € M, (F), B € M,,(F). The Kronecker Product of the matrices
A and B is defined by

apnB  ai2B - aimB

a21B CLQQB cee CLQmB
A® B = i

amB ameB - ammB

Let C € Myyun(F). The vectorization of matriz C is written as vec(C). This is a column vector in F™"
composed of columns of C.

Lemma 2.1. Let A € M,,(F), B € M,(F), and X € Mypxn(F). Then
vec(AXB) = (BT @ A)vec(X).
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By this lemma, Sylvester equation AX — X B = C can be written as a linear system of mn variables.
(I, ® A — BT @ I,,)vec(X) = vec(C).
Then we have vy p = Null(/, ® A — BT ® I,,).
Theorem 2.9 (Byrnes-Gauger). Let A € M,,(F), B € M,(F). Then we have
vAA+VvBB—2vaB > 0.
The equality holds if and only if m = n and the matrices A, B are similar.
Proof. This is a consequence of the following combinatorial inequality.
Let mi1 <mo < -+ <my, n; <ng <--- < ng be integers. Then
Z (min(m;, m;) + min(n;, n;) — 2min(m;, n;)) > 0
7:7j
with equality holds if and only if (m;) and (n;) are identical.
This inequality follows from considering the diagonal and off-diagonal pairs.
Case 1: i =3
We have m; + n; — 2min(m;, n;) > 0 with equality holds if and only if m; = n; for all i.

Case 2: The off-diagonal pairs (i, j) and (j,7) where ¢ < j.

Subcase 2-1: The intervals [m;, m;] and [n;, n;] do not overlap.
Without loss of generality, assume m; < n;.
We have m; + n; — 2m; + m; +n; — 2m; = 2n; — 2m; > 0.

Subcase 2-2: The intervals [m;, m;] and [n;, n;] overlap.
Without loss of generality, assume m; < n; < m;.
We have m; + n; — 2m; +m; +n; — 2n; = 0.

Thus, the off-diagonal pairs’ contribution are always nonnegative. Considering diagonal contributions,
it is easy to see that the equality holds if and only if the sequences are identical. O

2 2

The following criteria for similarity can be checked through elementary row operations on n* x n

matrices.
Corollary 2.4. Let A, B € M,(F). Then A and B are similar if and only if va o = vp p = vap. That is,
Null(l, ® A — AT @ I,,) = Null(I, ® B— BY @ I,) = Null(l, ® A — BT @ I,).
Since A" and A are similar, we also have by rank-nullity theorem,
Corollary 2.5. Let A, B € M, (F). Then A and B are similar if and only if
tk(l, ® A—A®1I,) =rk([, ® B—B®1I,)=1k([, ® A— B® I,).

Theorem 2.10 (Symmetric Similarity Transform, [11]). Let A be a n x n matriz over F. Suppose also
that the minimal polynomial and characteristic polynomial of A coincide. Then any invertible matriz X
satisfying XA = AT X is symmetric.

Proof. Consider the following system (X 4) of matrix equations.

(10) XA=ATXx,
(11) X =x".
Note that the below system is equivalent to (¥ 4).

(12) XA=ATXT,

(13) X =xT,
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The linear transform X +— (XA — ATXT, X — XT) has rank at most n2 —n. Thus, the solution space of
the system (X 4) has dimension at least n.
Now, fix a non-singular transform X, such that XqA = AT X. Then

XA=ATX ifand only if X;'XA=AX;'X.

This yields an isomorphism X + X;'X between {X | XA = ATX} and C4 = {X' | X'A = AX'}. Since
dimpC4 = n, the solution space for (10) has dimension n. Since the solution space for (X 4) has dimension
> n, the dimension must be exactly n. Hence, every matrix X satisfying (10) must also satisfy (11). O

Note that by Cecioni-Frobenius, it is clear that Cyr 4 and C4 has the same dimension. There is no
need for constructing isomorphism.
For the companion matrix, we have an explicit similarity transform (see [2, Proposition 5.4] and [8]).

Example 2.3. (Similarity Transform for Companion Matrices)
Let p(x) = 2" + ap_12" 1 + - + a12 + ap € Flz] and

00 -- —ag
10 --- —ay
Cp)=|" 1 e
0 0 —Qnp—1
be the companion matrix. Then we have
—ag 0 0 0
0 as  as ap—1 1
T 0 as 1
C(p)Y =YC(p) = .
An—1 1
0 1
where
ar  az -+ Ap_2 Ap-1 1
as az -+ Gp_q 1
as a4 PPN 1
Y = .
an—1 1

Theorem 2.11 (Symmetric Similarity Transform 2). Let A be a n x n matriz over a field F. Then there
exists an invertible symmetric matriz X such that XA = ATX.

Proof. Let Xo be an invertible matrix over IF such that A = X 17X, with J is consisted of blocks on
diagonal, each block is a companion matrix of p® for some irreducible polynomial p and s > 1. Say,
J = diag{C1,...,C,}. Now, we may have distinct blocks in J corresponding to the same irreducible
polynomial. Consider

XA=ATX = X;"'xx;'7=J"X;T XX,
where T used the notation X, 7 = (X, ).

By Theorem 2.10 or Example 2.3, we can find a symmetric invertible matrix corresponding to each
companion matrix in J. Put XO_TXXO_1 = diag{Y1,...,Y;} such that Y;C; = CiTYZ- and Y; is symmetric
invertible and of the same size with C; for each 1 <7 < r.

Then we can put a symmetric invertible matrix

X = nglag{yla s ’Y;“}X()a
which satisfies XA = ATX. O
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Note that an invertible X with XA = AT X may not be symmetric if the characteristic polynomial and
minimal polynomial of A do not coincide.

Theorem 2.12 (Double Commutant Theorem, [5]). Let A, B be n x n matriz over a field F such that any
matriz that commutes with A also commutes with B. Then B = p(A) for some p € F[z].

Proof. We use rational canonical form-invariant factor form (Theorem 2.1). Then we have
M4 ~Fz]/P, @ --- & Fz]/P,,

where P; = (p;), pi|pi+1. This gives invariant subspace decomposition,

MA = @ M;,
=1

where M; ~ F[z]/P;.

Let m; : M4 — M; be the projection, and mij © M; — M; be the natural projection for i > j.
Extend 7;; linearly to M4 by assigning 0 on all My (k # 4). Then all 7; and 7;; commute with A, thus
commute with B. Therefore, each M; is A-invariant, thus it is also B-invariant. Let e; € M; be the element
corresponding to 1 + P; € Fz]/P;.

We see that there is p(z) € F[z]| such that Be, = p(A)e,. We claim that Be; = p(A)e; for all i < r, and
hence B = p(A).

Be; = Bmyier = mpiBep = WTip(A)er = p(A)ﬂ'rier = p(A)ei-
This completes the proof of our claim. O

Example 2.4. (Variation of Parameters and Inverse of Confluent Vandermonde Matrix)

Let p(z) = 2™ 4+ ap—12™ 4+ - + a1z + ag = [[j_; (@ — \p)™ € Clz] with \; # A, for i # j and
A= C(p)T. Consider the differential equation (*1)

Y + an_1y™ Y 4+ ary’ + aoy = b(x).
We may convert this to a system of differential equations (*2)
y' = Ay +b()

where y = (y ¢/ -+ ¥y )T and b(z) = (0 --- 0 b(z))T = b(x)en.

We have A = VJV~! where J = diag(Ji,...,J,) is Jordan form with J; = J7 (A, m) having 1 above

the main diagonal, and V' is the confluent Vandermonde matrix V' = (V; --- V,) with Vi is n X mj, matrix
with entries i
TN ifi>
(Vie)ij = = =
0 otherwise.

Apply the matrix exponential to A = VJV =1, then we have ' = Ve!/V=1. Thus, etV = Ve!/. The
first row of Ve!” is

(yh ayn)

M gty th il Ay tr gt
= e 76 ’-..’e 7',"'76 ’e ...’e 7' .
(mq —1)! (my —1)!

Let W(t) = e!4V. Then by W'(t) = AW(t), W(t) is the Wronskian matrix for the linearly independent
solutions yi, ..., y, of the homogeneous part of (*1). We apply the Variation of Parameters to (*2), then
a particular solution has the form

y(t) = W(t) /O W (w)b(u)du = W (L) /0 b(u)e="V e, du.

To complete the Variation of Parameters to (*1), we take the first row (y1 -+ yn) of W(t) so that a
particular solution has the form

t
(yp -+~ yn)/ b(u)e_“JV_len du.
0
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) is obtained by the partial fraction

ZZ x—)\k

Then V~le, = (Kig- - Kimg - Kppo-- Kr,mr)T-

Note that Kj; = K 15,0]? can be computed from the

power series expansion of (z — Ag)™* /p(x) at © = Ag.

The column n — j of V!

is obtained from the column n — j + 1 recursively. For each k < r, obtain

(K lgji, . 7Klg],r)nk) from (K]gl_l)’ e 7K]g]"n_ll)) by the following algorithm (see [4]):

e Apply the left shift to obtain (K,i{;l),- K,(fmi), 0),

e Add A, multiple of (K} (‘7 1)7 e li]n_wt))’

o Add a,—; multiple of (K, , K ).

Then we have
K g K Ky
7 I ) R P R PO
K/, 0 K/, Ky,

KV +

e

0
K9V 4, (Ki) )+ an(oj)K,gyg% .
MESD +a KO

To see why this algorithm works, apply Laplace transform to the homogeneous part of the equation (*1).

Let y = cy1jy1 + -+

+ enjyn and Y = L(y). Since L(y™) = s™Y — s™ 1y (0) — - -

— ym=1(0), we have

p(s)Y — (5" Lt a, 18" 4 +a1)y(0)
— (8" 2 fap18" 3 4 4 a2)y (0)
— (5 + an_1)y™2(0)
—y=D(0) = 0.
If (y(0) y'(0) - y(”‘l)(O))T = e;, we have
s +ap 18" 4 oy

Y =

Thus, L(y) = c1;L(y1)+- - -+ ;L£(yn) must be the partial fraction decomposition of

As W(0) =V and V(er; ---

(s = A+ N)(s" T +ap 18" 714

cnj)T = ej, we obtain that (c1; ---
For the recursive relation between consecutive columns, observe that for any root A of p(s)

+aj) +aj

p(s)

Sn7j+an_18"7j71+~~~+aj
p(s) '

cnj)T is j-th column of V=1,

=0,

+ CL]'S + aj—l

STZ—]+1 + an_lsn_] _|_ e

p(s)

p(s)

"tan_1s" I 4 4ay is

If M\-part of the partial fraction of 2 =0

By
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"It an 18" 4 Fajstai 1

then A\-part of 2 is

p(s)
B +BQ +AB1 B3+ \By B, + ABp_1 B,
LA (s — \)2 (s—Am1 " (s—\)m
a;j—141 . aj—1An, ’
s— A (s =)™

where 8{1/\ +oot (51—4% is A-part of 1/p(s). The sum of the constant term Bj’s over all A’s is zero if j > 2.

"I tan—18" I 4 tay
. . . . . . p(S)
following limit of the integral over the circle C'r of radius R centered at 0,

For, observe that it is the sum of all residues of =

. Thus, its vanishing is shown by the

» i
lim "+ ap_18™Y +'--+ade:0
R—oo Jop, p(s)

Example 2.5. (Powers of a Matrix) Let ma(z) = 2™ +apm—12™ 1+ -+ajz+ag = [[_, (—Ag)™ € Clz]
with \; # A; for i # j, be the minimal polynomial of A € My(C). Then for any n > m, we write the
powers of A symbolically as follows:

Anferl An—m I
An—m+2 Anfm+1
=My = Myt
A" Ar;—l Am—l
where
0 1 0
0 0 1 0
MA:C(mA)T: : : — :
0 0 - .- 1
7a0 70/1 DY . .. 70/’[7’171
By Ma = VJV~! where J = diag(Jy,...,J;) is Jordan form with J; = JT (A, ms) having 1 above the
main diagonal, and V' is the confluent Vandermonde matrix V' = (V; --- V,) with V} is m x my matrix
with entries
i—IN\I—]  ap s~ s
D fi>
(Vi)ij = G it =
0 otherwise.
We compute V! by the method of the previous example. The required powers of M4 are computed by
My = v gremtly =l Let (c,(fi)l, - ,C%L,)m) be the last row of M’}~™*1. Then

A" = cgs’)ll + 652’)214 + 4 c%a)mAm_l.
Thus, each entry of A™ is a linear combination of A}'qy(n) with ¢, € C[z] and deg gy (n) < my — 1.

Example 2.6. (Stochastic Matrix-Perron-Frobenius Theorem) Let A € M,,(R) with nonnegative entries.
A is called a stochastic matriz if each column sums to 1. Then each row of AT sums to 1. The following
properties hold for AT.

e 1 is an eigenvalue of AT with an eigenvector 1 = (1 1--- 1),

e For each n € N, (AT)" is has each row sum to 1.

Proof. This follows from (AT)"1 = 1. O

e If \ € C is any eigenvalue of AT, then || < 1.
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Proof. To see this, let z = (21 ---2,)7 € C" be an eigenvector associated to an eigenvalue A. Let z; be
the entry of = with the largest absolute value. Dividing by z;, we may assume that z; = 1 and |z;| <1 for
each j. Then i-th entry of Az = Az gives (*)

a1171 + -+ a1+ F Ty = A
Then by Triangle Inequality and |z;| < 1, it follows that
Al = lanizr + -+ ain + -+ @inxn| < a1+ +ap =1

The above proof is in fact similar to that of Gershgorin Theorem (Theorem 3.5).

e Any Jordan block J7(1,m) of AT corresponding to the eigenvalue 1, must satisfy m = 1.

Proof. Let X be an invertible matrix with AT = XJX ™! so that J is the Jordan form of A”. Observe
that (AT)" remains bounded as n € N varies. Then X ~1(AT)"X = J" is also bounded. If J has a block
JT(1,m) with m > 2, then J" has polynomial entries in n and J" fails to be bounded. g

A stochastic matrix is said to be positive if all entries are positive. If A € M, (R) is positive stochastic,
then the following properties hold for AT .

e Any eigenvalue A of AT with |A\| = 1 must be A = 1. The eigenspace corresponding to the eigenvalue
1 is 1-dimensional, hence it is spanned by 1.

Proof. If |A\| = 1, then inequality below must be an equality,
Al = lapzy + -+ aip + -+ amxn| <ap + -+ apm =1

Thus, positivity of A shows that |z;| =1 for each j. Moreover, |aj1z1 + -+ aj1 + - - - + ainxy| = 1 implies
that z; = 1 for each j. O

Since A and AT are similar, they have equivalent Jordan forms.

° le A" = (b --- b) where entries of b € R™ are positive and sum to 1.
n—oo

Proof. Let v be a real eigenvector of A corresponding to the eigenvalue 1. Let Y be an invertible matrix
such that A = YJY ! with v the first column and J the Jordan form of A. Since any eigenvalue A # 1 of
AT has |A| < 1 and the eigenvalue 1 has 1-dimensional eigenspace, A also satisfies those properties. Then
we see that J" converges as n — oo. In fact,

10 0
0 0 0
lim J" = .
n—o0 :
0 0 - 0
Consequently,
10 0
00 - 0 0 - 0
lim A" =Y L. . X Yil =1lu . . Yfl = UwT
n—oo . : . . . .
0 0 0 |0 0

O

where w! € M, «n(C) is the first row of Y ~1. Since A is stochastic, so is vw?. Thus, there is b € R" with
nonnegative entries sum to 1 such that all columns of vw? are b. The vector b with nonnegative entries
must in fact have positive entries due to b = Ab.
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3. SPECTRAL THEORY

Definition 3.1. We say that a n x n complex matrix A is
o hermitian if A' = A,
o skew-hermitian if A' = —A,
e unitary if AAT =7 ,
o normal if AA" = A" A,
For simplicity, we write A" — A*. Note that hermitian, skew-hermitian, and unitary matrices are

normal. The eigenvalues of hermitian matrices are all real, those of skew-hermitian matrices are all pure
imaginary, and those of unitary matrices are all on the unit circle.

Definition 3.2. For any vectors v,w € C", the hermitian product of v and w is denoted by (v,w) and
defined by
(v,w) = v w.

Theorem 3.1 (Common Eigenvector). Let A, B be n x n complex matrices such that AB = BA. Then
there is a nonzero vector v € C™ which is an eigenvector for both A and B.

Proof. Let A € C be an eigenvalue of a matrix A and V), be the corresponding eigenspace. For any x € V),
we have

ABx = BAz = B(\z) = ABx.

This shows that Bx € V), for any € V). Thus, V) is invariant under B. Then let v € V), be an eigenvector
of B restriced to V). This is a common eigenvector of both A and B. (]

Proposition 3.1. Let v be an common eigenvector of A and A* for a normal matriz A. If (v,w) = 0,
then (v, Aw) = 0.

Proof. Let A*v = \v. Then (v, Aw) = (A*v, w) = A(v,w) = 0. O

Theorem 3.2 (Spectral Theorem). Let A be an n x n normal matriz. Then there exists a unitary matriz
U and a diagonal matriz D such that A =UDU*.

As a corollary, a hermitian matrix A is diagonalizable through a unitary matrix U and a real diagonal
matrix D. Denote by
A(A) = Aa(A) = -+ = An(4)

the real eigenvalues of a hermitian matrix A.

Theorem 3.3 (Courant-Fischer). Let A be a hermitian matriz. Then
Ai(A) = sup inf v*Av,

dim V=4 V&V
vl=

|v]=1
Ai(A) = inf *Av.
i(4) dim Veen—it1 21618 vaY
lv|=1
Proof. The second identity follows from the first by taking —A in the first one. To prove the first identity,
assume that the standard basis ey, ..., e, are the eigenvectors of A. Take V = span{ej,...,e;}. Then
dimV =1 and
inf v*Av = \;(4) < sup inf v*Aw.
veV dim V=4 Y€V
[v|=1 lv]=1
For the reverse inequality, take any V with dim V' =i and W = span{e;,...,e,}. Then dim(V NW) > 1
by the dimension identity

dim(V AW) = dim V + dim W — dim(V + W).
We take a unit vector v € VN W. Then v*Av < \;(A) since v € W. Therefore, we have
inf v*Av < \;(A)

veV
lv|=1
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since v € V. Taking the supremum over dim V' = i, we have the result.
Corollary 3.1. If A and B are both hermitian matrices, then
[Xi(A+ B) — Ai(A)| < [|B]|

where ||B|| is the operator norm of B.
Proof. We use v*(A + B)v = v*Av + v*Bv. Let dimV = i. Find a unit vector v € V such that

v*Av = inf v*Av.

il

Since v*Av < \;(A) and v*Bv < || BJ|, we have

in‘f/ v (A+ B)v < \(A) + || Bl
vE
lv|=1

Taking the supremum over dim V' = ¢, we have
Ni(A+ B) < N(A) +||B].
Similarly,
Ai(A) < Ai(A—(=B)) + || - B
Then the result follows.
Corollary 3.2 (Weyl’s Inequality). If A and B are both hermitian matrices, then
Aij—1(A+ B) < N(A) + X\(B)
whenever i,7 > 1 andit+j—1<n.

Proof. Let {v1,...,v,} be an orthonormal basis so that Avy = Ap(A)vg for all k, and {w,..

an orthonormal basis so that Bwp = Ag(B)wy for all k. Consider V' = span{v;,...,v,} and W =
span{wj,...,wy,}. Then dimV =n—-i+ 1, dimW = n —j + 1, and v*Av < X\;(A) for all unit vec-

tor v € V, w*Bw < \j(B) for all unit vector w € W. By the dimension identity, we have

dm(VnW)>mn—-i+1l)+(n—j+1)—n=n—(i+j—1)+1.

Consider a subspace V' of VN W with dimV’' =n — (i+j — 1) + 1. For any unit vector v € V', we have

v (A+ B)v =v"Av +v*Bv < N\ (A) + A\;(B).
Then by the second Courant-Fischer identity, the result follows.
Definition 3.3. Let A € M,,(C). The spectral radius of A is defined as
p(A) = max{[Ai,..., [An[}
where A1, ..., A\, are eigenvalues of A.

If A is hermitian, we have p(A) = max{|A1(4)], |An(A4)|}.

Proposition 3.2. The spectral radius function is continuous. That is p : M,(C) — R is continuous.

The proof relies on Rouche’s theorem.

Lemma 3.1 (Fekete). Let (a,,) be a subadditive real sequence, that is, a, € R for alln, and apipn < am~+an

for all m, n. Then lim(a,/n) € [—o0,c0) and

. an . An,
lim — = inf —.
n—oo n neN n
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Proof. For any n € N, we have a, < na;. Thus, the sequence (a,/n) is bounded above. Let a =
lim sup(ay/n) = limg_o0(an, /nk) with increasing sequence of natural numbers (ng). Fix any m € N. By
Euclidean Division Algorithm, we have ny = mqy + r for some g, € Z N [0,00) and 0 < 1, < m. Then
qr — 00 as k — 0o. We have

n - omge+rr - omgg+rg
Taking k — oo, we obtain o < a,,/m. Thus, taking infimum over m, we have a < inf(a,,/m). Hence, we
must have lim(a,/n) = a.

Any,  Omge+ry < qkQm + Qp,

0

Theorem 3.4. Let A € M, (C). The following hold

(1) p(A) < 1 if and only if limy,_,oo A* = 0.

(2) For any k € N, p(A) < HA"”‘Hl/k.

(3) (Gelfand) p(A) = limy_,o [|A%]|"/".
Proof of (1). Note that limg_,o, A¥ = 0 if and only if limy_,o, J* = 0 for any Jordan block of A. Also,
p(A) < 1if and only if any eigenvalues A of A satisfy |A\| < 1. Then (1) follows from

lim J* =0 if and only if J = J(\,r) with [\| < 1.

ko0
O
Proof of (2). Let Av = Av for some A € C and 0 # v € C". Then for any k € N,
(\eo| = [A%o] < | A|[Jo].
Then |\¥| < [|A||. This gives |A| < || A% /.
O

Proof of (3). We have ||A*AT|| < ||A*|| - || A7 for all k,j > 0. If |A*|| = 0 for some k € N, then we have
|A¥+7|| = 0 for all j € N. Thus, we have limy_, || A*||'/* = 0. Assume ||A||* > 0 for all k € N. Then by
Fekete’s lemma, the sequence (4 log [|A¥||)) converges. Thus, the sequence (|[A*|/*) converges. Consider
the function f : {z € C||z| > p(A)} — M,(C) defined by f(z) = (21 — A)~!. This is a vector-valued

analytic function Laurant series is
it 1 i A
21— (A)z) =z 2k

k=0
The series cannot converge for any |z| < p(A), so its radius of convergence as a power series of w =1/z is
p(A)~1. By Cauchy-Hadamard’s radius of convergence formula, we must have
p(A) = limsup [|A*||'/* = lim || AF|V/%.
k—o00

k—o0

g

Note that this proof works when A is a bounded linear operator on a Banach space (see [7]).
The locations of eigenvalues depending on the entries of matrices can be found in Gershgorin’s disk
theorem.

Theorem 3.5 (Gershgorin’s Disk Theorem). Let A € M, (C). For eachi=1,...,n, let B; =3, |ai;|.
Then the set of eigenvalues {\1,...,\n} of A satisfies

(M- A} C UL D(ag, Ry).

Proof. Let A be an eigenvalue of A. Choose an eigenvector x with |z;| = maxi<j<y |z;|. Then by dividing

x;, we may impose |z;| <1 for all j =1,...,n, and z; = 1. Since Az = Az, we have
A= )\:ci = Zaijxj = Qg4 + Zai]’l‘j.
j i

By triangle inequality, it follows that
‘)\ — a¢¢| S Ri.
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Thus, we have the result. O
The eigenvalue inequalities can be improved in case the matrix A is hermitian.

Theorem 3.6. Let A € My, (C) be hermitian. Let c; be the j-th column of A with the j-th component is
set to zero. Then for each j = 1,...n, there is an eigenvalue X of A such that |\ — a;j| < ||cj|l2 where
llcjll2 is €a-norm of c;.

Proof. Let E; = cje;‘-F + eijT, where e; is the standard basis vector. Then a;; is an eigenvalue of A — Ej.
Since A and A — E; are both hermitian, their is an eigenvalue X of A satisfies

A —agi| < [|E5ll = llejll2
Thus, the result follows. O

This is a special case of Bauer-Fike theorem (see [9, Theorem 5.15]).
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